Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e15338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168534

RESUMO

Background: DNA metabarcoding is rapidly emerging as a cost-effective approach for large-scale biodiversity assessment and pest monitoring. The current study employed metabarcoding to assess insect diversity in citrus orchards in Ganzhou City, Jiangxi, China in both 2018 and 2019. Insects were sampled using Malaise traps deployed in three citrus orchards producing a total of 43 pooled monthly samples. Methods: The Malaise trap samples were sequenced following DNA metabarcoding workflow. Generated sequences were curated and analyzed using two cloud databases and analytical platforms, the barcode of life data system (BOLD) and multiplex barcode research and visualization environment (mBRAVE). Results: These platforms assigned the sequences to 2,141 barcode index numbers (BINs), a species proxy. Most (63%) of the BINs were shared among the three sampling sites while BIN sharing between any two sites did not exceed 71%. Shannon diversity index (H') showed a similar pattern of BIN assortment at the three sampling sites. Beta diversity analysis by Jaccard similarity coefficient (J) and Bray-Curtis distance matrix (BC) revealed a high level of BIN similarity among the three sites (J = 0.67-0.68; BC = 0.19-0.20). Comparison of BIN records against all those on BOLD made it possible to identify 40% of the BINs to a species, 57% to a genus, 97% to a family and 99% to an order. BINs which received a species match on BOLD were placed in one of four categories based on this assignment: pest, parasitoid, predator, or pollinator. As this study provides the first baseline data on insect biodiversity in Chinese citrus plantations, it is a valuable resource for research in a broad range of areas such as pest management and monitoring beneficial insects in citrus gardens.


Assuntos
Citrus , Mariposas , Animais , Código de Barras de DNA Taxonômico , Citrus/genética , Insetos/genética , Mariposas/genética , Biodiversidade , DNA/genética
2.
Ecol Evol ; 11(11): 7018-7028, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141272

RESUMO

Herbivory is a highly sophisticated feeding behavior that requires abilities of plant defense suppression, phytochemical detoxification, and plant macromolecule digestion. For plant-sucking insects, salivary glands (SGs) play important roles in herbivory by secreting and injecting proteins into plant tissues to facilitate feeding. Little is known on how insects evolved secretory SG proteins for such specialized functions. Here, we investigated the composition and evolution of secretory SG proteins in the brown marmorated stink bug (Halyomorpha halys) and identified a group of secretory SG phospholipase C (PLC) genes with highest sequence similarity to the bacterial homologs. Further analyses demonstrated that they were most closely related to PLCs of Xenorhabdus, a genus of Gammaproteobacteria living in symbiosis with insect-parasitizing nematodes. These suggested that H. halys might acquire these PLCs from Xenorhabdus through the mechanism of horizontal gene transfer (HGT), likely mediated by a nematode during its parasitizing an insect host. We also showed that the original HGT event was followed by gene duplication and expansion, leading to functional diversification of the bacterial-origin PLC genes in H. halys. Thus, this study suggested that an herbivore might enhance adaptation through gaining genes from an endosymbiont of its parasite in the tripartite parasitic and symbiotic interactions.

3.
Arch Insect Biochem Physiol ; 107(3): e21796, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34076304

RESUMO

MicroRNAs (miRNAs) are a type of small noncoding RNAs that regulate gene expression at the posttranscriptional level and can influence significant biological processes. Arma chinensis (Hemiptera: Pentatomidae) is a predaceous insect species that preys upon a wide variety of insect pests. It is important to explore and understand the molecular mechanisms involving miRNAs in regulating developmental and other gene expression for beneficial insects. However, examination of miRNAs associated with Hemiptera, especially predatory bugs, has been absent or scarce. This study represents the first comprehensive analysis of predatory bug A. chinensis encoded miRNAs through high throughput sequencing and predicts genes and biological processes regulated by the newly identified miRNAs through analyzing their differential expression in and across five nymphal instars. A total of 64 A. chinensis miRNAs, including 46 conserved miRNAs and 18 novel miRNAs, were identified by analysis of high throughput sequence reads mapped to the genome. A total of 2913 potential gene targets for these 64 miRNAs were predicted by comprehensive analyses utilizing miRanda, PITA, and RNAhybrid. Gene Ontology annotation of predicted target genes of A. chinensis suggested the key processes regulated by miRNAs involved biological processes, regulation of cellular processes, and transporter activity. Kyoto Encyclopedia of Genes and Genomes pathway predictions included the Toll and Imd signaling pathway, Valine, leucine and isoleucine degradation, Steroid biosynthesis, the AGE-RAGE signaling pathway in diabetic complications, and Alanine, aspartate and glutamate metabolism. This newly identified miRNAs through analyzing their differential expression, assessment of their predicted functions forms a foundation for further investigation of specific miRNAs.


Assuntos
Heterópteros/metabolismo , MicroRNAs/metabolismo , Animais , Perfilação da Expressão Gênica , Ninfa/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...